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The Penna model is a model of evolutionary ageing through mutation accumulation where traditionally time
and the age of an organism are treated as discrete variables and an organism’s genome is represented by a
binary bit string. We reformulate the asexual Penna model and show that a universal scale invariance emerges
as we increase the number of discrete genome bits to the limit of a continuum. The continuum model,
introduced by Almeida and Thomas �Int. J. Mod. Phys. C 11, 1209 �2000�� can be recovered from the discrete
model in the limit of infinite bits coupled with a vanishing mutation rate per bit. Finally, we show that scale
invariant properties may lead to the ubiquitous Gompertz law for mortality rates for early ages, which is
generally regarded as being empirical.
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I. INTRODUCTION

The Penna model was devised in 1995 by Penna �1� to
model the process of evolutionary ageing through mutation
accumulation. The idea that natural selection would permit
behavior such as ageing is initially baffling: it would seem
that survival of the fittest would remove any such detrimental
behavior. Medawar proposed �2� that certain genes may be
age specific in their effects; if such genes are harmful and are
activated later on in the reproductive life of an organism,
natural selection against them will be much weaker than if
they had become active earlier in the organism’s life. Given
the existence of such genes, it can be anticipated that harmful
genetic conditions will become more common as an organ-
ism ages giving rise to increasing mortality rates with age.
The Penna model is a means to model the evolution of an
age-structured population under the influence of age-specific
harmful mutations �3�.

Traditionally, mortality rates are known to rise exponen-
tially for early ages, giving rise to the Gompertz law �4� of
mortality. More recent experiments using much larger
sample populations have shown that the mortality rate for
advanced ages is shown to slow substantially, giving rise to a
mortality plateau or peaks �5–8�. It has been shown that a
modified Penna model while continuing to show Gompertz
growth in mortality rates at early ages can also exhibit a
mortality plateau at advanced ages �9�.

The original Penna model is discrete in nature, with time
represented by an integer and an organism’s genome by a bit
string. Each 0 on the bit string represents a healthy site; each
1 is a harmful mutation which becomes active once the or-
ganism reaches age x where x is the index of the site on the
bit string. Having activated T harmful mutations an organism
dies. The bit string is taken to be finite in length �usually
32 bits� and each newborn organism has a number of muta-

tions M introduced into the bit string. These mutations are
taken to be harmful so they can only turn healthy sites into
unhealthy ones—a mutation on an unhealthy site is ignored.
This assumption is relaxed in Ref. �10� where a small rate of
positive mutation is allowed: we confine ourselves here to
the case of only harmful mutations.

Scaling behavior was considered by Malarz �11� who in-
vestigated the effects of different bit string lengths on the
Penna model. Malarz inquired as to whether large bit strings
were required or whether one could expect, after appropriate
scaling of other parameters, one would get the same results
for different genome lengths. Investigating the effects of
string length through simulation, Malarz was unable to find
scaling in the Penna model.

Almeida et al. �12� later considered a continuous Penna
model and for certain mutation regimes were able to find
simple scaling relations. To obtain such scaling the authors
decoupled the string length and mutation rate so that the
probability of finding a given number of mutations in a given
string length was given by a Poisson distribution. They also
observed that the Penna model is able to sustain a maximum
possible lifespan in steady state, which we call lmax. If the
imposed string length is greater than lmax then it will have no
effect on the properties of the population; if it is less than
lmax then the imposed string length will impose a maximum
lifespan on the population and the distribution will be ac-
cordingly altered. The authors suggested that the size of time
steps in a discrete Penna model may have an effect on scal-
ing behavior but did not investigate the size or nature of this
effect.

Brigatti et al. �13� investigated scaling in a sexual Penna
model through simulation and suggested that results from the
continuum model of Almeida et al. �12� were not readily
mapped onto the discrete model employed in simulation.
Scaling effects in the sexual model were also investigated by
Laszkiewicz et al. �14� through simulation.

In this paper we extend our previous analytical solution of
the asexual model �9,15� to examine the scaling behavior. We
show that the scale invariance emerges as we increase the
number of discrete genome bits, and that the scaling be-
comes exact in the continuum case, which can be regarded as
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the limit of infinite genome bits coupled with a vanishing
mutation rate per bit. This establishes a clear relationship
between the distribution, parameters, and scaling behavior of
the continuum model of Almeida et al. and those of the tra-
ditional discrete model. Finally, we use scale invariance to
analytically show that at early ages mortality rates grow ex-
ponentially in accordance with the Gompertz law �4� which,
for the lack of a general proof, is still generally regarded as
being empirical �16�.

II. A CONTINUOUS PENNA MODEL

The asexual Penna model can be reformulated �12,15� so
that rather than considering discrete time steps, time is
treated as a continuous variable, t. The bit string of an organ-
ism is replaced by an axis representing the genome: position
x on the genome is examined at age x. Harmful mutations are
then represented by � functions along the genome. After ac-
cumulating T � functions an organism dies.

For our analytical solutions, we concern ourselves prima-
rily with T=1 as generalizing a T=1 solution for a continu-
ous model will be no more difficult than generalizing a dis-
crete T=1 model, as done previously �9�. In the continuum
Penna model an organism reproduces at a constant rate b and
dies at age x where its genome has its first harmful mutation
�� function� at position x.

An organism can be characterized by its age x and its
genetic lifespan l �the position on the genome of the first
harmful mutation�. Neither x nor l are constrained to be in-
tegers. n�x , l� is now a density of organisms so that the num-
ber of organisms with age and genetic lifespan in the range
x→x+dx and l→ l+dl is given by n�x , l�dxdl. The probabil-
ity of giving birth in time dt is given by bdt, the probability
of a mutation being introduced in length dl is given by �dl.
These definitions are consistent with the discrete Penna
model where sites can be interpreted as infinitesimal lengths
of genome and time steps as infinitesimal units of time. The
probability of no mutations occurring in length dl is 1−�dl
which is e−�dl for infinitesimal dl.

Newborn organisms may be produced as unmutated cop-
ies of organisms with equal genetic lifespan, or as mutated
copies of naturally longer lived organisms. An equation can
then be constructed for the production of new organisms
within the population for the infinitesimal time period of t to
t�= t+dt

n�0,l�t�dtdl = bdtdle−�l�
0

�

dxn�x,l�t

+ bdt�dle−�l�
0

�

dx�
l

�

dl�n�x,l��t �1�

where subscripts t and t� denote time. At steady state, the
subscripts may be dropped, the above equation can be sim-
plified and an expression obtained �9,15� for the relative
sizes of population densities �see Fig. 1�

n�l + x�
n�l�

=
l + x

l

e�l − bl

e��l+x� − b�l + x�
exp��

l

l+x �bl�

bl� − e�l�
dl�� .

�2�

For a steady state to exist there must be a longest lived
subpopulation which is self-sustaining, i.e., not reliant on
mutated births. No other subpopulation can be self-
sustaining if the population is to remain bounded, as shorter-
lived organisms can always be created by mutated copies of
longer-lived ones. For the longest-lived subpopulation to be
self-sustaining, each organism must produce one perfect
copy of itself during its lifetime

lmaxbe−�lmax = 1. �3�

All other populations, with l� lmax, gain from mutated births
of the longest lived, so unmutated birth per individual must,
on average, be less than unity

lbe−�l � 1 ∀ l � lmax. �4�

These conditions can be combined to give �15�

lmax �
1

�
, �5�

b =
1

lmax
e�lmax. �6�

In the discrete Penna model the probability of no mutation
for 1 site or bit is 1−m where m is the mutation rate per site.
The probability for l sites without mutations would be �1
−m�l. In the limit of m→0, �1−m�l�e−ml and therefore m
play the same role as � in the continuous case, where the
probability of no mutations in genome length l is e−�l. Thus
we can identify the continuum Penna model as the limit of
the discrete model as the mutation rate per site tends to zero.
For vanishingly small units of discretization, a discrete
model becomes a continuous one. A measure of the extent of
discretization is the size of one of the discrete units divided
by the total size of the system; for the Penna model this is
1 / lmax. As the extent of discretization gets smaller, lmax tends
to infinity which implies a vanishing mutation rate. Thus, the
two limits of mutation rate tending to zero, and of increas-
ingly fine grained discretization, are identical.

FIG. 1. A plot of genetic lifespan distribution for a discrete ���
and continuous Penna model with lmax=30.
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III. SCALING PROPERTIES

We examine the discrete and continuous Penna models in
turn to examine how they behave under rescaling. Informed
by this behavior we interpret the continuous model as the
limit of a discrete model with a vanishingly small mutation
rate.

A. The discrete Penna model

The traditional asexual Penna model has one unit of dis-
cretization for each unit of time. It is possible to rescale the
discrete Penna model so that each unit of time is broken up
into several time steps. This can be done by taking a Penna
model with a maximum lifespan of almax and rescaling l so
that, in the rescaled time units, the model has maximum
lifespan lmax and a distinct time steps in one unit of time. For
example, an lmax=30 model could be rescaled to give an
lmax=15 model with two time steps per unit of time.

When discussing rescaled Penna models we require that
the steady-state conditions are invariant under rescaling. For
a population with lmax=60, the steady-state conditions should
be the same regardless of how many time steps one unit of
time has been broken up into. For steady-state conditions to
be invariant under rescaling the population with genetic
lifespan lmax must be self-sustaining and all other populations
partly dependent on mutation. The first condition can be
written as

blmaxe
−�lmax = 1. �7�

A model rescaled by a factor a will allow n�lmax−1/a� to
exist, where a gives the number of units of discretization per
time interval. The same conditions, Eqs. �4�–�6�, apply as
before. A population is then identified by the largest �un-
scaled� value of lmax it can sustain. When steady state is
required to be robust under rescaling of the model a popula-
tion can be uniquely identified by the maximum genetic
lifespan it can maintain.

For rescaled models to be the same they should give the
same population sizes at comparable points up to an arbitrary
scaling factor. If the discrete Penna model is scale invariant,
it should be possible to rescale a model to obtain an unscaled
model with shorter lmax. For instance: an lmax=30 model
scaled by a factor of 2 will have a rescaled maximum
lifespan of 15; if the Penna model is scale invariant, this
rescaled model will, at comparable points give identical re-
sults to an unscaled lmax=15 model �up to a constant normal-
ization factor for finite size scaling�. Where n30 denotes a
model with unscaled maximum lifespan 30, we require that
n30�2l� /n15�l� is constant. In a general case for models to be
identical after scaling we require that

nalmax
�al� 	 nlmax

�l� . �8�

This can be satisfied, eliminating the constant of proportion-
ality by

nalmax
�al + a�

nalmax
�al�

=
nlmax

�l + 1�

nlmax
�l�

. �9�

In the case of a=2 we require that

n�lmax,2��l + 1�

n�lmax,2��l + 1
2�

n�lmax,2��l + 1
2�

n�lmax,2��l�
=

n�lmax,1��l + 1�

n�lmax,1��l�
. �10�

For a Penna model to have lmax a factor of a greater, the
mutation rate and birth rate must be a factor of a smaller. If
the parameters of the model which is rescaled are labeled as
l�, ��, m�, and b�, then scaled and unscaled parameters are
related by

l� = al , �11�

lmax� = almax, �12�

�� =
�

a
, �13�

b� =
b

a
. �14�

Application of these scaling rules, the recursion relation
between successive subpopulations at steady state, and our
condition for scale invariance of the model gives a relation,
in terms of birth and mutation rate, which must be satisfied
for the discrete model to be scale invariant.

For a rescaling by a factor of 2 we require that

e�l − bl

e��l+1/2� − b�l + 1
2�e−�/2

e�l+1/2 − b�l + 1
2�

e��l+1� − b�l + 1�e−�/2

=
e�l − bl

e��l+1� − b�l + 1�e−� . �15�

This equality cannot be satisfied due to the factor of e−�/2

on the bottom of the recursion relation. As such, the discrete
Penna model does not exhibit scale invariance. In the limit of
a vanishing mutation rate: e−� approaches unity, the differ-
ences between scaled and unscaled models vanish and the
discrete model will become scale invariant. Figure 2 con-
firms that the scaled results of the discrete model do ap-
proach a limiting “master curve.” This limit is the same as
that which gives the continuous model, so we expect to find
the continuous model to be scale invariant. Note, only com-
parable points have been plotted and distributions have been
normalized so 	la

−1n�l�=1 where a is the scale factor.

B. The continuous Penna model

As in the discrete Penna model, we identify a population
by the largest value of lmax it can sustain. This value is no
longer constrained to be an integer and can be simply ex-
pressed as lmax=1/�. Rescaling of a continuous Penna model
is carried out in much the same way as in the discrete case:
lmax is divided by a scale factor a and the new model has a
correspondingly reduced maximum lifespan. In the continu-
ous model time is not broken into distinct time steps, but is
treated as a continuum: as a result rescaling will not alter the
number of time steps in one unit of time. If a continuous
model is to be invariant under rescaling by a factor a,
through similar reasoning as in the discrete case,
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nalmax
�al + ax�

nalmax
�al�

=
nlmax

�l + x�

nlmax
�l�

. �16�

Upon substitution of the steady-state relation for continuous
Penna model populations, this is satisfied by

l + x

l

e�l − bl

e��l+x� − b�l + x�
exp��

l

l+x �bl�

bl� − e�l�
dl��

=
al + ax

al

e��al − b�al

e���al+ax� − b��al + ax�

�exp��
al

al+ax ��b�al�

b�al� − e��al�
dal�� . �17�

The mutation rate and birth rate in the rescaled model are
labeled �� and b�. If, by rescaling the model by a factor a,
the maximum lifespans are to be the same then the mutation
and birth rates must be related by: ��=� /a, b�=b /a. After
this substitution the continuous model is clearly scale in-
varaint as both sides of the equation give

l + x

l

e�l − bl

e��l+x� − b�l + x�
exp��

l

l+x �bl�

bl� − e�l�
dl�� . �18�

It has been shown that in the limit of a vanishing mutation
rate coupled with an infinite maximum lifespan, the discrete
model becomes a continuous one. In other words, for a van-
ishing mutation rate, the discrete model becomes scale in-
variant. As the limits of a vanishing mutation rate and maxi-
mum genetic lifespan tending to infinity are equivalent,
approximate scale invariance becomes more realistic for dis-
crete Penna models of increasingly large lmax.

IV. MORTALITY RATES

Early age Penna mortality rates display the exponential
growth predicted by the Gompertz law. Using our analytical

solution to the simple Penna model we evaluate the growth
exponent 
 where the mortality rate at age x is proportional
to e
x. Evaluation of the Gompertz growth rate in terms of
the Penna model parameters will facilitate the fitting of
Penna parameters to real world data. Throughout, we assume
that any model has adopted the maximum genetic lifespan
allowed by its mutation rate.

Recall that for the simple discrete Penna model the mor-
tality rate is given by

M�x� =
n�x�/x

	l=0

�
n�l�/l

. �19�

Using the steady state recursion relation from the simple
Penna model, the ratio between successive mortality rates
can be evaluated analytically

M�x + 1�
M�x�

=
e�x − bx

e��x+1� − b�x + 1�e�� n�x�/x

	l=x+1

�
n�l�/l

+ 1� .

�20�

To usefully exploit this expression, we consider the limit of
small x, and small � where the Penna model becomes scale
invariant; numerical evaluation of the summation term and
predicted scaling behavior can be used to simplify Eq. �20�.
Numerically, we find for x� lmax

n�x�/x

	l=x+1

�
n�l�/l



1

lmax
. �21�

Crucially, if the Penna model exhibits universality as dis-
cussed earlier, this result remains valid for all values of lmax.
Therefore, noting the continuous Penna model result lmax
=1/� and b=�e, in the regime of small x� lmax, a first order

FIG. 2. A plot of genetic lifespan distribution for an unscaled
Penna model with lmax=20 ���, a model with lmax=200 scaled
down by a factor of 10 ���, and a model with lmax=2000 scaled
down by a factor of 100 ���. Only comparable points have been
shown.

FIG. 3. The exponential coefficient of Gompertz growth in mor-
tality rate estimated from early age mortality rates ��� is plotted
against the maximum lifespan the population can sustain �lmax�. The
dashed line gives the birth rate at each value of lmax.
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expansion of Eq. �20� leads to

M�x + 1�
M�x�

� eb, �22�

which then implies

M�x� 	 ebx, �23�

namely the Gompertz law, which states that the mortality rate
increases exponentially at early ages. Furthermore, it predicts
that the exponential coefficient of the Gompertz growth rate
is given by b, the birth rate. In Fig. 3, we compare this birth
rate with the exponential Gompertz coefficients, extracted by
taking the difference between the logs of mortality rates at
ages x=2 and x=1 for each population.

Our approximation depends on x� lmax, therefore, devia-
tion from Gompertz behavior at later ages �large x� is ex-
pected as the numerical approximation, Eq. �21�, breaks
down as x increases. Similarly, as shown in Fig. 3, for small

values of lmax this approximation works less well, but for
larger values of lmax it becomes increasingly accurate.

V. CONCLUSION

We have shown by means of exact analytic solution that,
in the asexual Penna model, a universal scale invariance
emerges as we increase the number of genome bits/sites,
with the invariance becoming exact in the limit of the con-
tinuum model. In addition, we have built on this result and
shown that scale invariance may be employed to derive an
analytical expression for the Gompertz law of mortality,
which has been generally regarded as empirical.
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